

Course Title: Radiation Dosimetry
Course Code: MPHY6352
Program: Medical Physics
Department: Physics
College: Science
Institution: University of Bisha
Version: 1
Last Revision Date: 5 September 2023

Table of Contents

A. General information about the course:	
1. Course Identification	3
۲. Teaching mode (mark all that apply)	خطأ! الإشارة المرجعية غير معرّفة
${}^{ m m m m m m m m m m m m m $	خطاً! الإشارة المرجعية غير معرّفة
B. Course Learning Outcomes (CLOs), Teaching Strategies ai الإشارة المرجعية غير معرّفة.	خطأا Assessment Methods
C. Course Content	خطأ! الإشارة المرجعية غير معرّفة
D. Students Assessment Activities	خطاً! الإشارة المرجعية غير معرّفة
E. Learning Resources and Facilities	خطأ! الإشارة المرجعية غير معرّفة
1. References and Learning Resources	خطأ! الإشارة المرجعية غير معرّفة
2. Required Facilities and equipment	خطأ! الإشارة المرجعية غير معرّفة
F. Assessment of Course Quality	خطاً! الإشارة المرجعية غير معرّفة
G. Specification Approval Data	خطأ! الإشارة المرجعية غير معرّفة

A. General information about the course:

3

1. Course Identification

1. Credit hours:

2. Course type

Α.	University 🗆	College 🗆	Department⊠	Track	Others □
В.	Required	Elective			

3. Level/year at which this course is offered: 6th Level / 3rd year

4. Course general Description

This course describes the principal physical quantities and units in radiation dosimetry, i.e absorbed dose, imparted to an absorber, beam Fluence, exposure, air-Kerma, effective dose in an animate medium such as the human body, Relative Biologic Effectiveness (RBE), stopping power. Moreover, the concept of charged particle equilibrium (CPE), instrumentation in dosimetry and the theoretical basis of radiation dosimetry is introduced with a discussion of the basic cavity theories used in radiation dosimetry.

5. Pre-requirements for this course (if any):

NA

6. Co- requirements for this course (if any):

7. Course Main Objective(s)

Recognize properties of radiation, the physical quantities, the measurement, calculation and assessment of ionizing radiation dose.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1. Le	ectures	45
2. La	aboratory/Studio	
3. Fie	eld	

4.	Tutorial	
5.	Others (specify)	
	Total	40

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and under	standing			
1.1	Recognize the dosimetric principles quantities and units	C Lecturing		Quizzes Homework Midterm exam	
1.2	Recognize the cavity theory and the properties of dosimeters	К2		Final exam	
2.0		Skills			
2.1	Solve problems related to radiation dosimetry.	S1	Solve problems. Self-learning	Quizzes Homework Midterm exam Final exam	
2.2	Illustrate the factor affecting the dose measurement.	S1	Solve problems. Self-learning	Quizzes Homework Midterm exam Final exam	
2.3	Communicate positively with others.	S4	Presentation Work group	Reports Presentation	
3.0		Values, autonomy, and	responsibility		
3.1	Exhibit self-learning skills independently.	V2	Self-learning	Reports Presentation	
3.2	Ability to work in team effectively.	V3	Work group	Reports Presentation	

C. Course Content

No	List of Topics	Contact Hours
1.	DOSIMETRIC PRINCIPLES, QUANTITIES AND UNITS PHOTON FLUENCE AND ENERGY FLUENCE	4

	KERMA CEMA ABSORBED DOSE STOPPING POWER	
2.	DOSIMETRIC PRINCIPLES, QUANTITIES AND UNITSRELATIONSHIPSBETWEENVARIOUSDOSIMETRICQUANTITIESVARIOUSDOSIMETRICEnergy fluence and kerma (photons)Fluence and dose (electrons)Fluence and dose (clearged particle equilibrium)Kerma and dose (charged particle equilibrium)Collision kerma and exposureFluence and exposure	4
3.	CAVITY THEORY Bragg–Gray cavity theory Spencer–Attix cavity theory Considerations in the application of cavity theory to ionization chamber calibration and dosimetry protocols Large cavities in photon beams Burlin cavity theory for photon beams Stopping power ratios	4
4.	RADIATION DOSIMETERS PROPERTIES OF DOSIMETERS Accuracy and precision Linearity Dose rate dependence Energy dependence Directional dependence Spatial resolution and physical size Readout convenience Convenience of use	4
5.	Absolute Radiation DosimetryCalorimetric Absolute Radiation DosimetryBasic Aspects of Absorbed Dose CalorimeterProperties of ThermistorsMeasurement of Thermistor ResistanceResistance versus Temperature Relationship for ThermistorPractical Aspects of Calorimetric Radiation DosimetryCalorimetric Absolute Radiation Dosimetry	5
6.	Absolute Radiation Dosimetry	4

	Fricke Chemical Absolute Radiation Dosimetry	
	Introduction to Fricke Chemical Absolute Radiation Dosimetry	
	Radiolysis of Water	
	Absorbed Dose in Chemical Dosimeter	
	Measurement of Radiation-Induced Ferric Concentration	
	Determination of Cavity Dose in Fricke Chemical Dosimetry Determination of Dose to Water from Mean Dose to Cavity	
	Absolute Radiation Dosimetry	
	Introduction to Cavity Ionization Chamber	
7.	Ionization Chamber Dosimetry Systems Configuration of Ionization Chamber-Based Dosimetry System Collection Efficiency and Saturation Curve of	5
	Ionization Chamber Charge Loss in Ionization Chamber for Continuous Beam	
	Absolute Radiation Dosimetry	
	Dose to Ionization Chamber Cavity Gas	
8.	Absolute Dosimetry with Ionization Chamber	5
0.	Standard Free-Air Ionization Chamber .	5
	Standard Bragg–Gray Cavity Ionization	
	Relative Radiation Dosimetry	
0	Relative Ionometric Radiation Dosimetry	F
9.	Luminescence Dosimetry	5
	Relative Radiation Dosimetry	
10.	Semiconductor Radiation Dosimetry	5
	Film Radiation Dosimetry	
	Total	45

Table: The matrix of consistency between the content and the learning outcomes of the course.

	1.1	1.2	2.1	2.2	2.3	3.1	3.2
Topic 1	V		V	V	V	V	V
Topic 2	V		V	V	V	V	V
Topic 3		V	V	V	V	V	V
Topic 4		V	V	V	V	V	V
Topic 5		V	V	V	V	V	V
Topic 6		V	V	V	V	V	V
Topic 7		V	V	V	V	V	V
Topic 8		V	V	V	V	V	V
Topic 9		V	V	V	V	V	V
Topic 10		V	V	V	V	V	V

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Radiation Physics for Medical Physicists, Third Edition, Ervin B. Podgoršak, Faculty of Medicine, Department of Oncology and Medical Physics Unit McGill University Montreal, Springer International Publishing Switzerland 2016. Introduction to Radiological Physics and Radiation Dosimetry, by References Frank Herbert, 2nd edition, 2004
Supportive References	RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS, IAEA, 2005 Printed by the IAEA in Austria July 2005.
Electronic Materials	- Blackboard. - PowerPoint presentations.

	- Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (projector, smart board, software)	Projector or smart board
Other equipment (depending on the nature of the specialty)	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students.	Indirect (Questionnaire).
Effectiveness of students assessment	Students, Staff members, Program Leader.	Indirect (Questionnaire).
	Peer Reviewer.	Direct (Review exam)
Quality of learning resources	Students, Staff members, Program Leaders.	Indirect (Questionnaire).
The extent to which CLOs have been	Students, Staff members, Program Leader.	Indirect (Questionnaire).
achieved	Course coordinator.	Direct (Course Learning Outcomes Assessment).

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	١
DATE	5 September 2023

